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Abstract  

Analyzing the future values of anticipated claims is essential in order for insurance companies to avoid major losses 

caused by prospective future claims. This study proposes a novel three-parameter compound Lomax extension. The 

new density can be "monotonically declining", "symmetric", "bimodal-asymmetric", "asymmetric with right tail", 

"asymmetric with wide peak" or "asymmetric with left tail". The new hazard rate can take the following shapes: 

"J-shape", "bathtub (U-shape)", "upside down-increasing", "decreasing-constant", and "upside down-increasing". 

We use some common copulas, including the Farlie-Gumbel-Morgenstern copula, the Clayton copula, the modified 

Farlie-Gumbel-Morgenstern copula, Renyi's copula and Ali-Mikhail-Haq copula to present some new bivariate 

quasi-Poisson generalized Weibull Lomax distributions for the bivariate mathematical modelling. Relevant 

mathematical properties are determined, including mean waiting time, mean deviation, raw and incomplete 

moments, residual life moments, and moments of the reversed residual life. Two actual data sets are examined to 

demonstrate the unique Lomax extension's usefulness. The new model provides the lowest statistic testing based 

on two real data sets. The risk exposure under insurance claims data is characterized using five important risk 

indicators: value-at-risk, tail variance, tail-value-at-risk, tail mean-variance, and mean excess loss function. For the 

new model, these risk indicators are calculated. In accordance with five separate risk indicators, the insurance 

claims data are employed in risk analysis. We choose to focus on examining these data under five primary risk 

indicators since they have a straightforward tail to the left and only one peak. All risk indicators under the insurance 

claims data are addressed for numerical and graphical risk assessment and analysis. 

 

 

Key words:  

Clayton Copula; Convex Density; Farlie-Gumbel-Morgenstern Copula; Insurance Claims; Kernel Density 

Estimation; Lomax Distribution; Real Data Modeling; Risk Analysis ; Risk Exposure; Value-at-Risk,  
 

Mathematical Subject Classification: 62N01; 62N02; 62E10. 

 

1. Introduction 

 

Every property/casualty claim procedure uses two independent random variables (RVs): the claim-size RV and the 

claim-count RV. The first two basic claim RVs can be combined to produce the aggregate-loss RV, which represents 

the total claim amount generated by the underlying claim procedure. In this study, a unique distribution of claim-size 

variables known as the quasi-Poisson generalized Weibull Lomax (QPGWL) model is discussed. Several actuaries 
employed a wide variety of parametric families of continuous distributions to simulate the size of property and casualty 

insurance claim amounts. Claim-size RVs take only non-negative values. Thus, for all such RVs  Pr{ 𝑍 < 0} = 0, i.e.,  
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𝐹𝑍(𝑧) = 0 for all 𝑍 < 0. The probability density function (PDF) 𝑓𝑍(𝑧)  for a continuous size-of-loss model for which 

claim size is unbounded (or unlimited) from above takes on positive values over a semi-infinite interval of the form 

0 ≤ 𝑑1 < 𝑍 < ∞. For positive 𝑑2  in this interval, the portion of the distribution defined on the sub-interval  (𝑑2, ∞)  

is called the long tail of the distribution. Alternatively, the part of the loss distribution defined on  (𝑑1, 𝑑2), extending 

to the left and bounded below by 0, is called the short tail of the distribution. Clearly, such probability distributions 

cannot be symmetric.  

 

Due to the actuarial literature, the insurance claim-size data sets frequently have positive skewness. However, this 

article examines and models a new collection of insurance claims data that is adversely skewed under the QPGWL 

model and some risk indicators. An actuarial measurement of the potential loss that might happen in the future as a 

result of a specific action or event is the risk exposure. As part of a review of the business's risk exposure, risks are 

usually ranked according to their likelihood of occurring in the future multiplied by the potential loss if they did. The 

insurance firms can differentiate between little and large losses by ranking the likelihood of likely losses in the future. 

Speculative risks frequently result in losses such as failures to comply with regulations, a decline in brand value, 

security flaws, and liability issues. Generally, the risk exposure (r(⋅)) can be expressed as  

r(⋅) = 𝑇𝐿 × Pr(⋅), 
where 𝑇𝐿  is the total loss of risk occurrence and  Pr(⋅) refers to the probability of the occurring risk. However, there 

has been a lot of work done to examine historical insurance data using time series analysis or continuous distributions. 

Recently, numerous actuaries have represented actual insurance data using continuous distributions, particularly those 

with large tails.  

Real data have been modelled using continuous heavy-tailed probability distributions in a variety of practical domains, 

including economics, engineering, risk management, dependability, and actuarial sciences. The insurance data sets 

can be unimodal right-skewed, right-skewed with heavy tails, or left-skewed. In this paper, we show how the flexible 

continuous heavy-tailed QPGWL distribution can be utilized to represent left-skewed insurance claims data. 

 

The insurance claims data present a variety of challenges despite huge significance. The largest issue with risk analysis 

and its applicable applications is identifying the quality of the data and calculating the number of incomplete or 
missing observations; see Hogg and Klugman (1984), Lane (2000), Stein et al. (2014), and Ibragimov and Prokhorov 

(2017). Although, the real data sets for insurance claims are typically positive and frequently include right tails or 

heavy right tails, we will deal with negatively skewed insurance claims data. What allowed us to do this is that the 

new distribution is flexible enough for accommodating and modeling this type of data. 

 

Many studies employed the Lomax and lognormal distributions to model insurance payments data, and more 

specifically, massive insurance claim payment data. Several scholars, including Resnick (1997), have used the 

generalized Lomax model. Due of its monotonically decreasing density shape, the Lomax model does not offer a good 

fit for many actuarial applications when the frequency distributions are hump shaped. So, the lognormal is frequently 

used to model these data sets in these circumstances. However, this model does not have enough flexibility to deal 

with negatively skewed actuarial data sets. In this work, we present the QPGWL distribution for the left-skewed 
insurance claims real data sets to overcome this problem in the old standard models. As will be explained in more 

details and plots, it is noted that the probability density function (PDF) of the QPGWL model can be “monotonically 

decreasing”, “asymmetric with right tail”, “asymmetric with wide peak”, “asymmetric with left tail”, “symmetric” and 

“bimodal-asymmetric”. All these characteristics motivate the QPGWL distribution to model the insurance claims data 

and study and analyze risks accordingly. 

 

In order to model the real-life data of business failure, econometrics, actuarial science, queueing theory, and internet 

traffic modelling, Lomax (1954) investigated his continuous heavy-tail probability distribution. In many research 

papers, the Lomax model is called Pareto type-II (Pa-II) distribution. Special efforts aim to expand the Lomax 

distribution and its relevant extensions in applied statistics and related fields such as engineering, instance, wealth 

inequality, income, medicine, biological studies, and reliability. The Lomax model is applied for modeling real data 
of income and wealth (Harris,1968; Asgharzadeh and Valiollahi, 2011), type-II progressive censored competing risks 

data (Cramer and Schemiedt, 2011), real data of firm sizes (Corbellini et al., 2007)), reliability analysis, engineering, 

taxes and economic (Elgohari and Yousof, 2020a), times of failure/survival (Chesneau and Yousof, 2021), among 

others. Further, many other Lomax extensions can be cited such as the exponentiated Lomax and gamma Lomax 

(Gupta et al., 1998; Cordeiro et al., 2015), the transmuted Topp-Leone Lomax (Yousof et al., 2017), Kumaraswamy 
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Lomax (Lemonte and Cordeiro, 2013), Burr-Hatke Lomax (Yousof et al., 2018b), beta Lomax (Lemonte and Cordeiro, 

2013), odd log-logistic Lomax (Elgohari and Yousof, 2020a), proportional reversed hazard rate Lomax distribution 

(Elgohari and Yousof, 2020) and special generalized mixture Lomax (Chesneau and Yousof, 2021). Other important 

and flexible extensions can be found in Mansour et al. (2020e) and Aboraya et al. (2022). 

 
A random variable has the Lomax distribution if its cumulative distribution function (CDF) is given by 

𝐹𝜋(𝑦) = 1 − (1 + 𝑧)−𝜋|𝑧≥0,                                

where 𝜋 > 0 is the shape parameter. The above CDF of the one-parameter Lomax distribution is a special case from 
the Burr type XII (BXII) model. Hence, many theoretical details about the Lomax model and its relationship with 

other related distributions can be found in Burr (1942, 1968 and 1973), Lomax (1954), Burr and Cislak (1968), Harris 

(1968), Rodriguez (1977), Tadikamalla (1980) and Yadav et al. (2020).  

 

We propose and study a new compound version Lomax (L) distribution using the generalized Weibull Lomax (GWL) 

model. The CDF of the three-parameter GWL model can be expressed as 

𝐆𝑎,𝑏,𝜋(𝑧) = (1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏})𝑎|𝑧∈ℝ+ , (1) 

where 𝑎, 𝑏, 𝜋 > 0 are three shape parameters. For 𝑎 = 1, the GWL model reduces to the Weibull Lomax. For 𝑏 = 1, 

it becomes the generalized exponential Lomax. For 𝑏 = 2, it refers to the generalized Rayleigh Lomax. For 𝑎 = 𝑏 =
1, it is the exponential Lomax. For 𝑎 = 1 and 𝑏 = 2, the GWL model refers to the Rayleigh Lomax. For 𝜋 = 1, it 

reduces to the exponentiated Weibull. For  𝑎 = 𝜋 = 1, it is just the Weibull. For 𝑏 = 𝜋 = 1, it is the exponentiated 

exponential. For 𝑏 = 2 and 𝜋 = 1, the GWL model is equal to the exponentiated Rayleigh. Consider the CDF of the 

quasi-Poisson family 

 

𝐹(𝑧) =
1

1 − 𝑒𝑥𝑝(−1)
{1 −

1

𝑒𝑥𝑝[𝐆𝐕(𝑧)]
}, 

 

 

(2) 

where 𝐆𝐕(𝑧) is the CDF of the baseline model, 𝐕 is the parameter vector, and let 𝐆𝐕(𝑧) = 𝐆𝑎,𝑏,𝜋(𝑧). The CDF of the 

new model has the form  

𝐹𝑎,𝑏,𝜋(𝑧) =
1

1 − 𝑒𝑥𝑝(−1)
{1 − 𝑒𝑥𝑝[−(1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏})𝑎]}|𝑎,𝑏,𝑐,𝑧∈ℝ+ , 

(3) 

Equation (3) defines the quasi-Poisson generalized Weibull Lomax (QPGWL) model. For 𝑏 = 1, the QPGWL 

distribution reduces to the quasi-Poisson generalized exponential Lomax. For 𝑏 = 2, it is the quasi-Poisson 

generalized Rayleigh Lomax. For 𝑎 = 1, it becomes the quasi-Poisson Weibull Lomax. For 𝑎 = 𝑏 = 1, the QPGWL 

distribution becomes the quasi-Poisson exponential Lomax. For 𝑏 = 2 and 𝑎 = 1, it is the quasi-Poisson exponential 

Lomax. For 𝜋 = 1, the QPGWL model refers to the quasi-Poisson generalized Weibull. For 𝜋 = 𝑏 = 1, it becomes 

the quasi-Poisson generalized exponential. For 𝜋 = 1 and 𝑏 = 2, it reduces to the quasi-Poisson generalized Rayleigh. 

For 𝜋 = 𝑎 = 1, it is equal to the quasi-Poisson Weibull. For 𝜋 = 𝑎 = 𝑏 = 1, it becomes the quasi-Poisson 

exponential. For 𝑏 = 2 and 𝜋 = 𝑎 = 1, it refers to the reduced quasi-Poisson exponential. By differentiating (3), the 

PDF follows as  

𝑓𝑎,𝑏,𝜋(𝑧) =
𝑎𝑏𝜋 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏} 𝑒𝑥𝑝[−(1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏})𝑎]

[1 − 𝑒𝑥𝑝(−1)](1 + 𝑧)1−𝑏𝜋[1 − (1 + 𝑧)−𝜋]1−𝑏(1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏})1−𝑎
. 

(4) 

 

The hazard rate function (HRF) of the QPGWL extension can be obtained from 𝑓𝑎,𝑏,𝜋(𝑧)/[1 − 𝐹𝑎,𝑏,𝜋(𝑧)].  Let 

𝑍 ∼QPGWL (𝑎, 𝑏, 𝜋) be a RV having PDF (4).  Figure 1 (left plot) provides some plots of the QPGWL PDF for 

selected parameters values. Figure 1 (right plot) gives some plots of the QPGWL HRF.  Figure 1 shows that the PDF 

of the QPGWL model can be “monotonically decreasing”, “asymmetric with right tail”, “asymmetric with wide peak”, 

“asymmetric with left tail”, “symmetric” and “bimodal-asymmetric”. Based on Figure 2, the HRF of the QPGWL 



Pak.j.stat.oper.res.  Vol.18  No. 3 2022 pp 601-631  DOI: http://dx.doi.org/10.18187/pjsor.v18i3.3652 

 

 
A New Compound Lomax Model: Probertites, Copulas, Modeling and Risk Analysis Utilizing the Negatively Skewed Insurance Claims Data 604 

 

distribution can be “decreasing-constant”, “upside down-constant”, “increasing”, “J-shape”, “bathtub (U-shape)” and 

“upside down- increasing”. 

 

For the purpose of simplifying the mathematical modelling of the bivariate RVs, we derive some new bivariate 

QPGWL (BQPGWL) type distributions using the Renyi's copula, Farlie-Gumbel-Morgenstern copula (FGMC), see 

Morgenstern (1956), Farlie (1960), Gumbel (1960), Gumbel (1961), Johnson (1975) and Johnson (1977) for more 

details, a modified FGMC that contains four internal types, the Clayton copula (CyC) and Ali-Mikhail-Haq copula 

(AMHC) (Ali et al., 1987). Based on the Clayton copula, the multivariate QPGWL (MQPGWL) type can be simply 

formed. Future projects might be devoted to researching these new concepts. For more details, see Pougaza and Djafari 

(2011), Rodriguez-Lallena and Ubeda-Flores (2004) and Ali et al. (2021a, b). The copulas approaches have been given 

great attention and efforts in the past few years, for example, see Al-babtain et al. (2020a,b) (for the Clayton copula), 

Shehata  and Yousof (2020, 2021) (for the Farlie-Gumbel-Morgenstern copula and the modified Farlie-Gumbel-
Morgenstern copula, among others), Shehata et al. (2020, 2021) (for the Farlie-Gumbel-Morgenstern copula, the 

Clayton copula, the modified Farlie-Gumbel-Morgenstern copula, and the Renyi's entropy copula), and Elgohari and 

Yousof (2020b, 2021) (for more details about the Farlie-Gumbel-Morgenstern and  modified Farlie-Gumbel-

Morgenstern copulas). 

 

Equation (3) is a “concave PDF” if for any 𝑍1 ∼ QPGWL (𝑎1, 𝑏1, 𝜋1) 𝑎𝑛𝑑 𝑍2 ∼ QPGWL (𝑎2, 𝑏2, 𝜋2), it satisfies 

𝑓(𝜻𝑧1 + �̅�𝑧2) ≥ 𝜻𝑓𝑎1,𝑏1 ,𝜋1
(𝑧1) +  �̅�𝑓𝑎2,𝑏2 ,𝜋2

(𝑧2)|0≤𝜻≤1 and   �̅�=1−𝜻. 

If the function 𝑓(𝜻𝑧1 +  �̅�𝑧2) is twice differentiable, and 𝑓//(𝜻𝑧1 +  �̅�𝑧2) < 0,   ∀  𝑍 ∈ ℝ+  , then 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a 

“strictly convex density function”. If 𝑓//(𝜻𝑧1 +  �̅�𝑧2) ≤ 0,   ∀  𝑍 ∈ ℝ+, then 𝑓(𝜻𝑧1 + �̅�𝑧2) is a “convex density 

function”.  

Equation (3) is a “convex density function” if for any 𝑍1 ∼ QPGWL (𝑎1, 𝑏1, 𝜋1) 𝑎𝑛𝑑 𝑋2 ∼ QPGWL (𝑎2, 𝑏2, 𝜋2), the 

PDF satisfies 

𝑓(𝜻𝑧1 + �̅�𝑧2) ≤ 𝜻𝑓𝑎1,𝑏1 ,𝜋1
(𝑧1) +  �̅�𝑓𝑎2,𝑏2 ,𝜋2

(𝑧2)|0≤𝜻≤1 and   �̅�=1−𝜻. 

If the function 𝑓(𝜻𝑧1 +  �̅�𝑧2) is twice differentiable, and 𝑓//(𝜻𝑧1 +  �̅�𝑧2) > 0,   ∀  𝑍 ∈ ℝ+, then 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a  

“strictly convex density function”.  

If 𝑓//(𝜻𝑧1 + �̅�𝑧2) ≥ 0,   ∀  𝑍 ∈ ℝ+, then 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “convex density function”. If 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “convex 

PDF” and 𝝍 is a constant, then the function 𝝍𝑓(𝜻𝑧1 + �̅�𝑧2) is a “convex density function”. If 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a 

“convex density function”, then [𝝍𝑓(𝜻𝑧1 +  �̅�𝑧2)] is a convex for every 𝝍 > 0. If 𝑓(𝜻𝑧1 +  �̅�𝑧2) and 𝑔(𝜻𝑧1 + �̅�𝑧2) 

are “convex density functions” then [𝑓(𝜻𝑧1 +  �̅�𝑧2) + 𝑔(𝜻𝑧1 +  �̅�𝑧2)] is also a “convex density function”. If 

𝑓(𝜻𝑧1 +  �̅�𝑧2) and 𝑔(𝜻𝑧1 +  �̅�𝑧2) are “convex density functions”, then [𝑓(𝜻𝑧1 +  �̅�𝑧2). 𝑔(𝜻𝑧1 + �̅�𝑧2)] is also a 

“convex density function”. If the function −𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “convex PDF”, then the function 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a 

“convex density function”. If 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “concave PDF”, then 1/𝑓(𝜻𝑧1 + �̅�𝑧2) is a “convex density function” 

if 𝑓(𝑧) > 0. If 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “concave density function”, 1/𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “convex density function” if 

𝑓(𝑧) < 0. If 𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “concave density function”, 1/𝑓(𝜻𝑧1 +  �̅�𝑧2) is a “convex density function”.  

 

Since presenting a novel QPGWL model did not become a motivated work itself, is necessary to present some strong 

motivations and practical justifications that highlight the importance, flexibility and applicability of this distribution. 

These reasons and drivers essentially developed the new PDF elasticity and the associated HRF. Further, the 

application ability of the new distribution in modeling and analyzing risks in the field of insurance is one of the most 

important practical issues for introducing it. Five key risk indicators including the value-at-risk, tail-value-at-risk, tail 

variance, tail mean-variance, and mean excess loss function are also used to describe the risk exposure associated with 

the left-skewed insurance claims data. These metrics are created for the QPGWL model. The five primary risk 

indicators are adopted to assess the left-skewed insurance claim data. Another reason for our motivation to compare 
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the new distribution's characteristics with those of the left-skewed insurance claims data is the new distribution's wide 

range of flexibility. The QPGWL model could be useful in modeling in the following cases: 

I. The real data sets whose Kernel density is semi-symmetric and bimodal as shown in Figure 3. 

II. The real data sets that have no extreme observations as shown in Figure 6. 

III. The asymmetric monotonically increasing hazard rate real data sets as illustrated in Figure 5. 

 

The QPGWL model proved its wide applicability in modeling against common variable Lomax extensions as shown 

below: 

I. The QPGWL model is evaluated against a number of well-known Lomax extensions, including the exponentiated 
Lomax extension, the odd log-logistic Lomax extension, the transmuted Topp-Leone Lomax extension, the 

Kumaraswamy Lomax extension, the Gamma Lomax extension, the special generalized mixture Lomax 

extension, the Burr Hatke Lomax extension, and the proportional reversed hazard rate Lomax extension, under 

the consistent-information criteria (CIC), Akaike information criteria (AIC), Bayesian information criteria (BIC) 

and Hannan-Quinn information criteria (HQIC).  

II. The exponentiated Lomax extension, the odd log-logistic Lomax extension, the transmuted Topp-Leone Lomax 

extension, the Kumaraswamy Lomax extension, the Gamma Lomax extension, the special generalized mixture 

Lomax extension, the Burr Hatke Lomax extension, and the proportional reversed hazard rate Lomax extension 

are all compared to the QPGWL model in statistical modelling of the service times of 63 aircraft windshields 

under the CIC, AIC, BIC and HQIC.  

 

Figure 1: Plots of the QPGWL PDF. 
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Figure 2: Plots of the QPGWL HRF. 
 

 

2. Properties 

2.1 Expanding the QPGWL density 

We create a useful linear representation for the QPGWL density function in this section. The exponentiated Lx (exp-

L) model is adopted to express the updated PDF (3). Using the power series, we expand the quantity 𝐴(𝑧) as 

𝐴(𝑧) = 𝑒𝑥𝑝[−(1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏})𝑎] = ∑
1

ℓ!

∞

ℓ=0

(−1)ℓ{1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏}}ℓ𝑎 . 

Then, the PDF (4) can be expressed as 

𝑓𝑎,𝑏,𝜋(𝑧) =
𝑎𝑏𝜋

1 − 𝑒𝑥𝑝(−1)
∑

(−1)ℓ 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏}

(1 + 𝑧)1−𝑏𝜋[1 − (1 + 𝑧)−𝜋]1−𝑏

∞

ℓ=0

𝐵(𝑧), 
 

(5) 

where 

𝐵(𝑧) = {1 − 𝑒𝑥𝑝{−[(1 + 𝑧)𝜋 − 1]𝑏}}(ℓ+1)𝑎−1. 
Then, consider the power series  

(1 −
𝜍1

𝜍2

)
𝜍3

= ∑(−1)𝒾
𝛤(1 + 𝜍3)

𝒾! 𝛤(1 − 𝒾 + 𝜍3)

∞

𝒾=0

(
𝜍1

𝜍2

)
𝒾

|
|
𝜍1
𝜍2

|<1 and 𝜍3>0
. 

 

(6) 

Applying (6) to the quantity 𝐵(𝑧) in (5), we can write 

𝑓𝑎,𝑏,𝜋(𝑧) =
𝑎𝑏𝜋[1 − (1 + 𝑧)−𝜋]𝑏−1

[1 − 𝑒𝑥𝑝(−1)](1 + 𝑧)1−𝑏𝜋
∑

(−1)ℓ+𝒾𝛤((ℓ + 1)𝑎)

𝒾! ℓ! 𝛤((ℓ + 1)𝑎 − 𝒾)

∞

ℓ,𝒾=0

𝐶(𝑧), 
 

(7) 

where  

 

𝐶(𝑧) = 𝑒𝑥𝑝[−(𝒾 + 1)[(1 + 𝑧)𝜋 − 1]𝑏] 
Since 
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(1 + 𝑧)𝜋𝑏−1 =
(1 + 𝑧)−𝜋−1

[(1 + 𝑧)−𝜋]𝑏+1
. 

Then, Equation (7) can be reduced to  

𝑓𝑎,𝑏,𝜋(𝑧) =
𝑎𝑏𝜋[1 − (1 + 𝑧)−𝜋]𝑏−1

[1 − 𝑒𝑥𝑝(−1)](1 + 𝑧)1−𝑏𝜋

(1 + 𝑧)−𝜋−1

[(1 + 𝑧)−𝜋]𝑏+1
∑

(−1)ℓ+𝒾𝛤((ℓ + 1)𝑎)

𝒾! ℓ! 𝛤((ℓ + 1)𝑎 − 𝒾)

∞

ℓ,𝒾=0

𝐷(𝑧), 

where 

 

𝐷(𝑧) = 𝑒𝑥𝑝[−(𝒾 + 1)[(1 + 𝑧)𝜋 − 1]𝑏]. 
Expanding the quantity 𝐷(𝑧) in power series, we can write 

𝐷(𝑧) = 𝑒𝑥𝑝 [−(𝒾 + 1) [
1 − (1 + 𝑧)−𝜋

(1 + 𝑧)−𝜋
]

𝑏

] = ∑
(−1)𝓅(𝒾 + 1)𝓅

𝓅!

∞

𝓅=0

[1 − (1 + 𝑧)−𝜋]𝓅𝑏

[(1 + 𝑧)−𝜋]𝓅𝑏
. 

 
(8) 

Inserting the previous expression of 𝐶(𝑧) into the last equation, the QPGWL density has the form  

𝑓𝑎,𝑏,𝜋(𝑧) =
𝑎𝑏𝜋(1 + 𝑧)−𝜋−1

1 − 𝑒𝑥𝑝(−1)
  ∑ (−1)ℓ+𝓅+𝒾

∞

ℓ,𝒾,𝓅=0

𝛤((ℓ + 1)𝑎)(𝒾 + 1)𝓅

ℓ! 𝒾! 𝓅! 𝛤((ℓ + 1)𝑎 − 𝒾)

[1 − (1 + 𝑧)−𝜋]𝓅𝑏+𝑏−1

[(1 + 𝑧)−𝜋]𝓅𝑏+𝑏+1
. 

 

 

(9) 

Applying the well-known generalized binomial expansion to [(1 + 𝑧)−𝜋](𝓅+1)𝑏+1, we have  

[(1 + 𝑧)−𝜋](𝓅+1)𝑏+1 = ∑
𝛤(𝑏⋆ + 1)[1 − (1 + 𝑧)−𝜋]𝓆

𝓆! 𝛤(𝓅𝑏 + 𝑏 + 1)

∞

𝓆=0

|𝑏⋆=(𝓅+1)𝑏+𝓆 . 
 

(10) 

By inserting (10) into Equation (9), the QPGWL density reduces to 

𝑓𝑎,𝑏,𝜋(𝑧) = ∑ 𝜻𝓅,𝓆

∞

𝓅,𝓆=0

𝓱𝑏⋆(𝑧), 
 

(11) 

where 

𝓱𝑏⋆(𝑧) = 𝑏⋆𝜋(1 + 𝑧)−𝜋−1[1 − (1 + 𝑧)−𝜋]𝑏⋆−1 

is the exponentiated-L (exp-L) PDF with power parameter 𝑏⋆ and 

𝜻𝓅,𝓆 = ∑
𝑎𝑏

[1 − 𝑒𝑥𝑝(−1)]

∞

ℓ,𝒾=0

(−1)ℓ+𝓅+𝒾(𝒾 + 1)𝓅𝛤([𝑙 + 1]𝑎)𝛤([𝓅 + 1]𝑏 + 𝓆 + 1)

ℓ! 𝒾! 𝓅! 𝓆! 𝛤([𝑙 + 1]𝑎 − 𝒾)𝛤([𝓅 + 1]𝑏 + 1)𝑏⋆
. 

Equation (11) reveals that the PDF of the QPGWL model can be written as a linear combination of exp-L densities.  
Then, based on the characteristics of the exp-L distribution, one can obtain those of the QPGWL model. Similarly, 

the CDF of the QPGWL distribution can also be expressed as a linear combination of exp-L CDFs  

 

𝐹𝑎,𝑏,𝜋(𝑧) = ∑ 𝜻𝓅,𝓆

∞

𝓅,𝓆=0

 𝐇𝑏⋆ (𝑧), 
(12) 

where 𝐇𝑏⋆(𝑧) is the exp-L CDF with power parameter 𝑏⋆. 

 

2.2 Moments 

The calculations below involve several special functions, including the complete beta function 

𝐵(𝜍1, 𝜍2) = ∫ 𝑥𝜍1−1
1

0

(1 − 𝑥)𝜍2−1𝒹𝑥, 

the incomplete beta function 

𝐵𝜍3
(𝜍1, 𝜍2) = ∫ 𝑥𝜍1−1

𝜍3

0

(1 − 𝑥)𝜍2−1𝒹𝑥, 

the complete gamma function 

𝚪(1 + 𝜍1) = 𝜍1! = ∏(𝜍1 − 𝜍2) = ∫ 𝑥𝜍1

+∞

0

𝑒𝑥𝑝(−𝑥) 𝑑𝑥

𝜍1−1

𝜍2=0

. 
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the lower incomplete gamma function 

𝛾(𝜍1, 𝜍2) = ∫ 𝑦𝜍1−1
𝜍2

0

𝑒𝑥𝑝(−𝑦) 𝑑𝑦 = ∑
(−1)𝜍3𝜍2

𝜍1+𝜍3

𝚪(1 + 𝜍3)(𝜍1 + 𝜍3)

+∞

𝜍3=0

, 

and the upper incomplete gamma function, where 

𝚪(𝜍1) = 𝚪(𝜍1, 𝜍2) + 𝛾(𝜍1, 𝜍2). 

Let 𝑌𝑏⋆  be a RV having the exp-L family with power 𝑏⋆ > 0  defined in (11) and 𝑍 be a RV having the 

QPGWL(𝑎, 𝑏, 𝜋) model. Then, the 𝓇th moment of the RV 𝑍 is 

𝜇𝓇,Z
′ = 𝔼(𝑍𝓇) = ∑ ∑ 𝜻𝓅,𝓆

𝓇

𝜍=0

∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
𝓇
𝜍 ) 𝐵 (𝑏⋆, 1 +

𝜍 − 𝓇

𝜋
) |𝜋>𝓇 . 

 

(13) 

 

2.3 Moment generating function (MGF) 

Clearly, the MGF can be derived from Equation (10) as  

𝑀𝑍(𝑡) = ∑ ∑
𝑡𝓇

𝓇!

𝓇

𝜍=0

∞

𝓅,𝓆,𝓇=0

𝜻𝓅,𝓆𝑏⋆(−1)𝜍 (
𝓇
𝜍 ) 𝐵 (𝑏⋆, 1 +

𝜍 − 𝓇

𝜋
) |𝜋>𝓇 . 

2.4 Incomplete moments 

The 𝓇th incomplete moment, say 𝝳𝓇,𝑍(𝑡), of the RV 𝑍 can be obtained from (10) as  

𝝳𝓇,𝑍(𝑡) = ∑ 𝜻𝓹,𝓺

𝑛

𝓅,𝓆=0

𝝳𝓇,𝑏⋆
−∞,𝑡(𝑡),  

where  

𝝳𝓇,𝑏⋆
−∞,𝑡(𝑡) = ∫ 𝑧𝓇𝑡

−∞
𝓱𝑏⋆(𝑧)𝒹𝑧. 

Then, the 𝓇th incomplete moment has the form  

𝝳𝓇,𝑍(𝑡) = ∑ ∑ 𝜻𝓅,𝓆

𝓇

𝜍=0

∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
𝓇
𝜍 ) 𝐵𝑡 (𝑏⋆, 1 +

𝜍 − 𝓇

𝜋
) |𝜋>𝓇 , 

and the 1st incomplete moment becomes  

𝝳1,𝑍(𝑡) = ∑ ∑ 𝜻𝓅,𝓆

𝓇

𝜍=0

+∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
1
𝜍

) 𝐵𝑡 (𝑏⋆, 1 +
𝜍 − 1

𝜋
) |𝜋 > 1. 

The mean deviations (MDs) of the RV 𝑍  about the 𝜇1,Z
′   are 𝔼(|𝑍 − 𝜇1,Z

′ |) = ℳ1(𝜇1,Z
′ ) and the MDs about the median 

(D) are 𝔼(|𝑍 − D|) = ℳ2,𝑍(D). They can  be given by ℳ1,𝑍(𝜇1,Z
′ ) = 2𝜇1,Z

′ 𝐹(𝜇1,Z
′ ) − 2𝝳1,𝑍(𝜇1,Z

′ ) and ℳ2,𝑍(D) =

𝜇1,Z
′ − 2𝝳1,𝑍(D), respectively, where 𝜇1,Z

′ = 𝔼(𝑍), D = 𝑄 (
1

2
) is the median of 𝑍 and 𝝳1,𝑍(𝑡) is given above. These 

results for 𝝳1,𝑍(𝑡) can be applied for constructing the Bonferroni (ℬ𝑜𝑛(𝒟)) and Lorenz (𝐿𝑜𝑟(𝒟)) curves defined (for 

a probability 𝒟) by ℬ𝑜𝑛(𝒟) = 𝝳1,𝑍(𝑄(𝒟))/(𝒟𝜇1,Z
′ ) and 𝐿𝑜𝑟(𝒟) = 𝝳1,𝑍(𝑄(𝒟))/𝜇1,Z

′ , respectively.  

 

2.5 Residual life (RL) and reversed residual life (RRL) 

The 𝒿𝑡ℎ moment of the RL of the RV 𝑍 can be obtained from 𝑤𝒿,𝑍(𝑡) = 𝔼[(𝑍 − 𝑡)𝒿  ]|𝑍>𝑡 𝑎𝑛𝒹 𝒿∈ℕ or from 

𝑤𝒿,𝑍(𝑡) =
1

1 − 𝐹𝑎,𝑏,𝜋(𝑡)
 ∫

∞

𝑡

(𝑧 − 𝑡)𝒿𝑓𝑎,𝑏,𝜋(𝑧)𝒹𝑧, 

which can also be written as 

𝑤𝒿,𝑍(𝑡) =
1

1 − 𝐹𝑎,𝑏,𝜋(𝑡)
∑ ∑

𝒿

𝑚=0

∞

𝓹,𝓺=0

𝜻𝓹,𝓺 (
𝒿
𝑚

) (−𝑡)𝒿−𝑚𝝳𝒿,𝑏⋆
𝑡,+∞(𝑡). 

Then,  
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𝑤𝒿,𝑍(𝑡) =
1

1 − 𝐹𝑎,𝑏,𝜋(𝑡)
∑ ∑ 𝜻𝓅,𝓆,𝜍(𝑤, 𝒿)

𝒿

𝜍=0

∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
𝒿
𝜍

) 𝐵𝑡 (𝑏⋆, 1 +
𝜍 − 𝒿

𝜋
) |𝑡>0,𝒿∈ℕ,𝜋>𝒿 , 

where  

𝜻𝓅,𝓆,𝜍(𝑤, 𝒿) = 𝜻𝓅,𝓆 ∑
𝒿

𝑚=0
(

𝒿
𝑚

) (−𝑡)𝒿−𝑚 . 

For 𝒿 = 1, we obtain the mean of the residual life (MRL) which can follow from 𝑤1,𝑍(𝑡) = 𝔼[(𝑍 − 𝑡)]|𝑍>𝑡 𝑎𝑛𝒹 𝒿∈ℕ 

as 

𝑤1,𝑍(𝑡) =
1

1 − 𝐹𝑎,𝑏,𝜋(𝑡)
∑ ∑ 𝜻𝓅,𝓆,𝜍(𝑤, 1)

1

𝜍=0

+∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
1
𝜍

) 𝐵𝑡 (𝑏⋆, 1 +
𝜍 − 1

𝜋
) |𝑡>0,𝒿=1,𝜋>𝒿 , 

where 

𝜻𝓅,𝓆,𝜍(𝑤, 1) = 𝜻𝓅,𝓆 ∑
1

𝑚=0
(

1
𝑚

) (−𝑡)1−𝑚 . 

On the other hand, the 𝒿𝑡ℎ moment of the RRL is 𝑾𝒿,𝑍(𝑡) = 𝔼[(𝑡 − 𝑍)𝒿]|𝑍≤𝑡,𝑡>0 and 𝒿∈ℕ or 

𝑾𝒿,𝑍(𝑡) =
1

𝐹𝑎,𝑏,𝜋(𝑡)
∫

𝑡

0
(𝑡 − 𝑧)𝒿𝑓𝑎,𝑏,𝜋(𝑧)𝒹𝑧, 

which can also be expressed as 

𝑾𝒿,𝑍(𝑡) =
1

𝐹𝑎,𝑏,𝜋(𝑡)
∑ ∑

𝒿

𝑚=0

∞

𝓹,𝓺=0

𝜻𝓹,𝓺(−1)𝑚 (
𝒿
𝑚

) 𝑡𝒿−𝑚𝝳𝒿,𝑏⋆
−∞,𝑡(𝑡). 

Hence, 

𝑾𝒿,𝑍(𝑡) =
1

𝐹𝑉(𝑡)
∑ ∑ 𝜻𝓅,𝓆,𝜍(𝑾, 𝒿)

𝒿

𝜍=0

+∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
𝒿
𝜍

) 𝐵𝑡 (𝑏⋆, 1 +
𝜍 − 𝒿

𝜋
) |𝑡>0,𝒿∈ℕ,𝜋>𝒿 , 

where 

𝜻𝓅,𝓆,𝜍(𝑾, 𝒿) = 𝜻𝓅,𝓆 ∑
𝒿

𝑚=0
(−1)𝑚 (

𝒿
𝑚

) 𝑡𝒿−𝑚 . 

For 𝒿 = 1, we obtain the mean waiting time (MWT), also called the mean inactivity time (MIT),  which can be 

derived from 𝓦1,𝑍(𝑡) = 𝔼[(𝑡 − 𝑍)]|𝑍≤𝑡,𝑡>0 and 𝒿=1 as 

𝑾1,𝑍(𝑡) =
1

𝐹𝑎,𝑏,𝜋(𝑡)
∑ ∑ 𝜻𝓅,𝓆,𝜍(𝑾, 1)

1

𝜍=0

∞

𝓅,𝓆=0

𝑏⋆(−1)𝜍 (
1
𝜍

) 𝐵𝑡 (𝑏⋆, 1 +
𝜍 − 1

𝜋
) |𝑡>0,𝒿=1,𝜋>𝒿 , 

where 

𝜻𝓅,𝓆,𝜍(𝑾, 1) = 𝜻𝓅,𝓆 ∑
1

𝑚=0
(−1)𝑚 (

1
𝑚

) 𝑡1−𝑚 . 

3. Copula 

3.1 BQPGWL type via CyC 

Consider that 𝑋1 ∼ QPGWL(𝑎1, 𝑏1, 𝜋1) and 𝑋2 ∼ QPGWL(𝑎2, 𝑏2, 𝜋2). The CyC depending on the continuous 

marginal functions 𝒵 = 1 − 𝒵 and 𝒴 = 1 − 𝒴 can be expressed as  

𝐶𝜁(𝒵, 𝒴) = [max (𝒵
−𝜁

+ 𝒴
−𝜁

− 1) ; 0]
−

1

𝜁
, 𝜁 ∈ [−1, ∞) − {0}, 𝒵 ∈ (0,1) 𝑎𝑛𝑑 𝒴 ∈ (0,1).       (14) 
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Let 𝒵 = 1 − 𝐹𝑎1,𝑏1 ,𝜋1
(𝑧1)|𝑎1 ,𝑏1,𝜋1

, 𝒴 = 1 − 𝐹𝑎2,𝑏2 ,𝜋2
(𝑧2)|𝑎2,𝑏2 ,𝜋2

. Then, the BQPGWL type distribution can be 

obtained from (14). A straightforward multivariate QPGWL (m-dimensional extension) via CyC can be easily 

determined analogously. The m-dimensional extension via CyC which is a function operating in [0,1]𝑚, and in that 

case, 𝑧𝑖 is not a value in [0,1] necessarily. 

 

3.2 BQPGWL type via Renyi's copula 

The Renyi's copula can defined as 𝐶(𝒵, 𝒴) = 𝑧2𝒵 + 𝑧1𝒴 − 𝑧1𝑧2, where the continuous marginal functions 𝒵 = 1 −

𝒵 = 𝐹𝐕1
(𝑧1) ∈ (0,1) and 𝒴 = 1 − 𝒴 = 𝐹𝐕1

(𝑧2) ∈ (0,1), and the values 𝑧1 and 𝑧2 are chosen to guarantee that 

𝐶(𝒵, 𝒴) is  a copula. Then, the associated CDF of the BQPGWL has the form  

𝐹(𝑧1, 𝑧2) = 𝐶 (𝐹𝑎1,𝑏1 ,𝜋1
(𝑧1), 𝐹𝑎2 ,𝑏2 ,𝜋2

(𝑧2)),  

where 𝐹𝑎1,𝑏1 ,𝜋1
(𝑧1) and 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)  are defined above. It is worth mentioning that, in [18] the authors emphasized 

that this copula does not show a closed shape and numerical approaches become necessary. 

 

3.3 BQPGWL type via FGMC 

Considering the FGMC, the joint CDF has the form   

𝐶𝜁(𝒵, 𝒴) = 𝒵𝒴(1 + 𝜁𝒵 𝒴), 

where the continuous marginal function 𝒵 ∈ (0,1), 𝒴 ∈ (0,1), 𝜁 ∈ [−1,1] and  𝐶𝜁(𝒵, 0) = 𝐶𝜁(0, 𝒴) = 0|(𝒵,𝒴∈(0,1)), 

which is a "grounded minimum condition " and 𝐶𝜁(𝒵, 1) = 𝒵 and 𝐶𝜁(1, 𝒴) = 𝒴, which is a "grounded maximum 

condition ". The grounded minimum/maximum conditions are valid for any copula. Setting 𝒵 = 𝒵𝐕1
|𝐕1>0 and 𝒴 =

𝒴
𝐕2

|𝐕2>0, we have 

𝐹(𝑧1, 𝑧2) = 𝐶 (𝐹𝑎1,𝑏1,𝜋1
(𝑧1), 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)) = 𝒵𝒴(1 + 𝜁𝒵 𝒴). 

The joint PDF reduces to  

𝑐𝜁(𝒵, 𝒴) = 1 + 𝜁𝒵⋆𝒴⋆, (𝒵⋆ = 1 − 2𝒵 and 𝒴⋆ = 1 − 2𝒴) 

or from 

𝑓𝜁(𝑧1, 𝑧2) = 𝑓𝑎1,𝑏1 ,𝜋1
(𝑧1)𝑓𝑎2 ,𝑏2 ,𝜋2

(𝑧2)𝑐 (𝐹𝑎1,𝑏1,𝜋1
(𝑧1), 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)), 

where the two functiona 𝑐𝜁(𝒵, 𝒴) and 𝑓𝜁(𝑧1, 𝑧2) are densities corresponding to the joint CDFs 𝐶𝜁(𝒵, 𝒴) and 𝐹𝜁(𝑧1, 𝑧2). 

 

3.4 BQPGWL type via modified FGMC 

The formula of the modified FGMC can written as 

𝐶𝜁(𝒵, 𝒴) = 𝒵𝒴 + 𝜁𝓞(𝒵)●𝓗(𝒴)●, 

where 𝓞(𝒵)● = 𝒵𝓞(𝒵) and 𝓗(𝒴)● = 𝒴𝓗(𝒴), 𝓞(𝒵) ∈ (0,1) and 𝓗(𝒴) ∈ (0,1) are two continuous functions 

such that 𝓞(𝒵 = 0) = 𝓞(𝒵 = 1) = 𝓗(𝒴 = 0) = 𝓗(𝒴 = 1) = 0. Let  

𝛼[𝓞(𝒵)●] = 𝑖𝑛𝑓 {𝓞(𝒵)●:
𝜕

𝜕𝒵
𝓞(𝒵)●, ∀∆1(𝒵)} < 0, 

𝜉[𝓗(𝒴)●] = 𝑖𝑛𝑓 {𝓗(𝒴)●:
𝜕

𝜕𝒴
𝓗(𝒴)●, ∀∆2(𝒴)} > 0, 

𝛽[𝓞(𝒵)●] = 𝑠𝑢𝑟 {𝓞(𝒵)●:
𝜕

𝜕𝒵
𝓞(𝒵)●, ∀∆1(𝒵)} < 0, 

𝜂[𝓗(𝒴)●] = 𝑠𝑢𝑟 {𝓗(𝒴)●:
𝜕

𝜕𝒴
𝓗(𝒴)●, ∀∆2(𝒴)} > 0. 

Then for 

1 ≤ 𝑚𝑖𝑛(𝛽[𝓞(𝒵)●]𝛼[𝓞(𝒵)●], 𝜂[𝓗(𝒴)●]𝜉[𝓗(𝒴)●]) < ∞ 

we have 

0 =
𝜕

𝜕𝒵
𝓞(𝒵)● −

𝒵

𝜕𝒵
𝜕𝓞(𝒵) − 𝓞(𝒵), 
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where 

∆1(𝒵) =
𝜕

𝜕𝒵
𝓞(𝒵)●  exists, 

and 

∆2(𝒴) =
𝜕

𝜕𝒴
𝓗(𝒴)●  exists. 

The following four types can be determined: 

● Modified FGMC Type I 

Consider  𝓞(𝒵)● = 𝒵𝓞(𝒵) and 𝓗(𝒴)● = 𝒴𝓗(𝒴), where 𝓞(𝒵) ∈ (0,1) and 𝓗(𝒴) ∈ (0,1) are two continuous 

functions, and 𝓞(𝒵 = 0) = 𝓞(𝒵 = 1) = 𝓗(𝒴 = 0) = 𝓗(𝒴 = 1) = 0 satisfy the above conditions. Then, the new 

bivariate version via modified FGMC type I can be obtained from 

𝐶𝜁(𝒵, 𝒴) = 𝒵𝒴 + 𝜁𝓞(𝒵)●𝓗(𝒴)●.  

● Modified FGMC Type II 

Consider 𝐴(𝒵; 𝜁1) and 𝐵(𝒴; 𝜁2) that satisfy the above conditions, where 𝐴(𝒵; 𝜁1)|(𝜁1>0) = 𝒵𝜁1(1 −

𝒵)1−𝜁1 and 𝐵(𝒴; 𝜁2)|(𝜁2>0) = 𝒴𝜁2(1 − 𝒴)1−𝜁2 . Then, the corresponding bivariate version (modified FGMC Type II) 

can be obtained from 

𝐶𝜁0,𝜁1,𝜁2
(𝒵, 𝒴) = 𝒵𝒴[1 + 𝜁0𝐴(𝒵; 𝜁1)𝐵(𝒴; 𝜁2)]. 

● Modified FGMC Type III 

Let 𝐴(𝒵)̃ = 𝒵[𝜍𝑜𝑔(1 + 𝒵)]|(𝒵=1−𝒵) and 𝐵(𝒴)̃ = 𝒴[𝜍𝑜𝑔(1 + 𝒴)]|(𝒴=1−𝒴) . Then, the associated CDF of the 

BQPGWL-FGM (modified FGMC type III) is  

𝐶𝜁(𝒵, 𝒴) = 𝒵𝒴[1 + 𝜁𝐴(𝒵)̃𝐵(𝒴)̃]. 

● Modified FGMC Type IV 
Using the quantile concept, the CDF of the BQPGWL-FGM (modified FGMC type IV) model can be obtained from  

𝐶(𝒵, 𝒴) = 𝒵𝐹−1(𝒵) − 𝐹−1(𝒵)𝐹−1(𝒴) + 𝒴𝐹−1(𝒴) 

where 𝐹−1(𝒵) = 𝑄(𝒵) and 𝐹−1(𝒴) = 𝑄(𝒴). 
 

3.5 BQPGWL type via AMHC 

Under the “stronger Lipschitz condition” and following Ali et al. (1978), the joint CDF of the Archimedean AMHC 

can be expressed as 

𝐶𝜁(𝒵, 𝒴) =
𝒵𝒴

1 − 𝜁𝒵𝒴
|𝜁∈(−1,1), 

 and the corresponding joint PDF of the Archimedean AMHC reduces to 

𝑐𝜁(𝒵, 𝒴) =
1

[1 − 𝜁𝒵𝒴]
2 (1 − 𝜁 + 2𝜁

𝒵𝒴

1 − 𝜁𝒵𝒴
) |𝜁∈(−1,1). 

Then, for any 𝒵 = 1 − 𝐹𝑎1,𝑏1 ,𝜋1
(𝑧1) = |[𝒵=(1−𝒵)∈(0,1)]  and 𝒴 = 1 − 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)|[𝒴=(1−𝒴)∈(0,1)], we have 

𝐶𝜁(𝑧1, 𝑧2) =
𝐹𝑎1,𝑏1,𝜋1

(𝑧1)𝐹𝑎2,𝑏2 ,𝜋2
(𝑧2)

1 − 𝜁[1 − 𝐹𝐕1
(𝑧1)][1 − 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)]
|𝜁∈(−1,1) 

and 

𝑐𝜁(𝑧1, 𝑧2) =

1 − 𝜁 + 2𝜁 {
𝐹𝑎1,𝑏1 ,𝜋1

(𝑧1)𝐹𝑎2,𝑏2 ,𝜋2
(𝑧2)

1 − 𝜁[1 − 𝐹𝑎1 ,𝑏1,𝜋1
(𝑧1)][1 − 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)]
}

{1 − 𝜁[1 − 𝐹𝑎1 ,𝑏1,𝜋1
(𝑧1)][1 − 𝐹𝑎2,𝑏2 ,𝜋2

(𝑧2)]}
2 |𝜁∈(−1,1). 

 

4. The key risk indicators 

Probability-based distributions may provide an adequate explanation of risk exposure. The degree of risk exposure is 

typically expressed as one number, or at the very least a small set of numbers. These risk exposure levels, which are 

usually referred to as key risk indicators (KRIs), are obviously functions of a particular model. Such KRIs give 

actuaries and risk managers knowledge about the level of a company's exposure to particular risks. There are many 

KRIs that can be considered and researched, including value-at-risk (VaR), tail-value-at-risk (TVaR), conditional-

value-at-risk (CVaR), tail variance (TV), and tail Mean-Variance (TMV), among others. A quantile of the distribution 
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of total losses in particular is the VaR. The VaR indicator can be used to indicate the chance of a bad outcome at a 

particular probability/confidence level. Actuaries and risk managers usually concentrate on this task. 

 

The risk exposure under insurance claims data was also described using five important risk indicators, including value-

at-risk, tail-value-at-risk, tail variance, tail mean-variance, and mean excess loss function. These metrics are developed 

for the proposed weighted exponential model. In accordance with the five separate risk indicators, the insurance claims 

data are employed in the risk analysis. We chose to focus on examining the insurance claims data under the five 

primary risk indicators since it has a straightforward tail to the left and only one peak. We were inspired to provide 

both a numerical and graphical risk assessment and analysis because the new distribution was flexible enough to model 

the insurance claims data under some risk indicators. By matching the new distribution's characteristics to those of the 

insurance claims data, we were further motivated. 

 

4.1 VaR indicator 

Risk exposure is an inevitable occurrence for any insurance organization. As a result, actuaries created a variety of 

risk indicators to assess how much a collection of assets might lose. One of the widely used benchmark risk indicators 

to assess risk exposure is now represented by this indicator numerically. The VaR indicator measures the risk of a 
prospective loss for the insurance company and calculates how likely a loss is given a certain likelihood. In general, 

the VaR estimates the amount of capital necessary to guarantee that the business does not officially go insolvent with 

a specific likelihood. 

 

The level of assurance picked is arbitrary. Therefore, many VaR values may be taken into account for various levels 

of confidence. It can be a high percentage, like 99.95 percent for the entire company, or it can be a low percentage, 

like 95 percent, for just one unit or risk class within the insurance company. These various percentages can represent 

the inter-unit or inter-risk type diversification that exists. 

 

Definition 1: Let 𝑍  denote a loss RV. Then, the VaR of  𝑍  at the  100𝑞%  level, say VaRq (𝑍; 𝜂, 𝜓)  or  𝜋(𝑞) , is the  

100𝑞%  quantile (or percentile) of the distribution of  𝑍 . 

Then, based on Definition 1, we can simply write for the QPGWL distribution. 

 

𝑃𝑟(𝑍 > 𝑄𝑈) = {
1%|𝑞=99% 

5%|𝑞=95% 

⋮ 

, 

where 𝑄𝑈 is the quantile function. For a one-year time when = 99.5% , the interpretation is that there is only a very 

small chance (0.5%) that the insurance company will be bankrupted by an adverse outcome over the next year. The 

quantity VaR (𝑍; 𝜂, 𝜓)  does not satisfy one of the four criteria for coherence (Wirch, 1999). 

 

4.2 TVaR risk indicator 

The VaR indicator is widely utilized in the management of financial risk over a specified relatively brief time period 

as a risk assessment. In these situations, both gains and losses are frequently described using the normal distribution. 

If the distribution of gains (or losses) is limited to the normal distribution, the quantity VaRq(Z) meets all coherence 

conditions. The data sets for insurance claims, however, are frequently distorted. Using the normal distribution to 

describe insurance claims is the next step. 

 

Definition 2: Let  𝑍  denote a loss RV. The TVaRq of  𝑍 at the  100𝑞%  confidence level is the expected loss given 

that the loss exceeds the   100𝑞%  of the distribution of  𝑍, namely  

TVaRq(𝑍; 𝑎, 𝑏, 𝜋) = 𝐸(𝑍|𝑍 > 𝜋(𝑞)) =
1

1 − 𝐹𝑎,𝑏,𝜋(𝜋(𝑞))
∫

∞

𝜋(𝑞)

𝑧𝑓𝑉(𝑧)𝑑𝑥 =
1

1 − 𝑞
∫

∞

𝜋(𝑞)

𝑧𝑓𝑎,𝑏,𝜋(𝑧)𝑑𝑥. 

Thus, the quantity TVaRq (𝑍; 𝑎, 𝑏, 𝜋)  is an average of all VaR values above at the confidence level  𝑞, which provides 

more information about the tail of the QPGWL distribution. Further, it can be reduced to  

TVaRq(𝑍; 𝑎, 𝑏, 𝜋) = VaRq(𝑍; 𝑎, 𝑏, 𝜋) + 𝑙(VaRq(𝑍; 𝑎, 𝑏, 𝜋)), 
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where  𝑙(VaRq(𝑍; 𝑎, 𝑏, 𝜋)) is the mean excess loss function evaluated at the  100𝑞% th quantile. So, TVaRq (𝑍; 𝜂, 𝜓)  

is larger than its corresponding VaRq (𝑍; 𝑎, 𝑏, 𝜋)  by the amount of average excess of all losses that exceed the 

ELq(𝑍; 𝑎, 𝑏, 𝜋) value of VaRq (𝑍; 𝑎, 𝑏, 𝜋). In the insurance literature, TVaRq (𝑍; 𝑎, 𝑏, 𝜋)  has been developed 

independently and it is also called the conditional tail expectation (Wirch,1999). It has also been called the tail 

conditional expectation (TCE) or expected shortfall (ES) (Tasche, 2002; Acerbi and Tasche, 2002). 

 

4.3 TV risk indicator 

The TV risk indicator, which Furman and Landsman (2006) established, calculates the loss's deviation from the 

average along a tail. Explicit formulas for the TV risk indicator under the multivariate normal distribution were also 

developed by Furman and Landsman (2006). 
 

Definition 3: Let  𝑍  denote a loss RV. The TV risk indicator, say TVq(𝑍),  is  

TVq(𝑍; 𝑎, 𝑏, 𝜋) = 𝐸(𝑍2|𝑍 > 𝜋(𝑞)) − [TVaRq(𝑍; 𝑎, 𝑏, 𝜋)]2. 

 

4.4 TMV risk indicator 

As a metric for the best portfolio choice, Landsman (2010) developed the TMV risk indicator based on the TCE risk 

indicator and the TV risk indicator. 

 

Definition 3: Let  𝑍  denote loss RV. The TMV risk indicator can be expressed as 

 

TMVq(𝑍; 𝑎, 𝑏, 𝜋, 𝜍) = TVaRq(𝑍; 𝑎, 𝑏, 𝜋) + 𝜍TVq(𝑍; 𝑎, 𝑏, 𝜋)|0<𝜍<1. 

 

Then, for any LRV, TMVq(𝑍; 𝑎, 𝑏, 𝜋, 𝜍) > TVq (𝑍; 𝑎, 𝑏, 𝜋)  and, for 𝜍 = 0, TMVq(𝑍; 𝑎, 𝑏, 𝜋) = TVaRq(𝑍; 𝑎, 𝑏, 𝜋).  
 

5. The maximum likelihood method 

The maximum likelihood method is a statistical technique for estimating the parameters of a probability distribution 
that has been assumed given some observed data. This is accomplished by maximizing a likelihood function to make 

the observed data as probable as possible given the assumed statistical model. The maximum likelihood estimate is 

the location in the parameter space where the likelihood function is maximized. Maximum likelihood is a popular 

approach for making statistical inferences since its rationale is clear and adaptable. The derivative test for figuring out 

maxima can be used if the likelihood function is differentiable. The ordinary least squares estimator, for example, 

maximizes the likelihood of the linear regression model, allowing the first-order requirements of the likelihood 

function to be explicitly solved in some circumstances. However, in the majority of cases, it will be essential to use 

numerical techniques to determine the probability function's maximum. 

 

We represent a collection of data as a random sample drawn from a joint probability distribution that is unknown and 

described in terms of a number of factors. Finding the parameters for which the observed data have the highest joint 

probability is the aim of maximum likelihood estimation.  Let 𝑍1, … , 𝑍𝑛 be any observed random sample (RS) from 

the QPGWL model. Then, the log-likelihood function (ℓ𝑎,𝑏,𝜋) can be derived from  

ℓ𝑎,𝑏,𝜋 = log [∏ 𝑓𝑎,𝑏,𝜋(𝑧𝑖)
𝑛

𝑖=1
] 

and can then be maximized directly using many common packages such as the R software (“optim function”) or, in 

some cases, by solving the system of the nonlinear equations of the likelihood derivations from the differentiating 

ℓ𝑎,𝑏,𝜋 with respect to 𝑎, 𝑏, 𝜋. The score vector components  

𝐔𝑎 =
𝜕

𝜕𝑎
ℓ𝑎,𝑏,𝜋 , 𝐔𝑏 =

𝜕

𝜕𝑏
ℓ𝑎,𝑏,𝜋 and 𝐔𝜋 =

𝜕

𝜕𝜋
ℓ𝑎,𝑏,𝜋 

can be derived to obtain the nonlinear system 𝐔𝑎 = 𝐔𝑏 = 𝐔𝜋 = 0 and then solving them simultaneously to find the 

maximum likelihood estimates (MLEs) of 𝑎, 𝑏, 𝜋. This system can only be solved numerically for the complicated 

models using some common iterative algorithms such as the “Newton-Raphson” algorithms.  The qualities of 

consistency and asymptotic normalcy are satisfied under regularity criteria, as usual. The asymptotic distribution, in 

particular, is multivariate normal behind the MLEs. To construct confidence intervals (CIs), confidence regions, and 

various likelihood tests, we can use first-order asymptotic theory.  
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6. Applications 

In this section, we examine two actual data sets in an effort to limit the new QPGWL model's widespread applicability. 

The Quantile-Quantile (Q-Q) plots, Total Time in Test (TTT) plots, Non-parametric Kernel Density Estimation 
(NKDE) plots, and Box Plots are just a few examples of valuable graphical tools that are employed. 

 

The first data set called the aircraft windshield data and represented failure times of 84 aircraft windshield. The second 

data set also called the aircraft windshield but represents service times of 63 aircraft windshield. Murthy et al. (2004) 

gave the two actual data. You can find numerous additional helpful symmetric and asymmetric data sets in Aryal et 

al. (2017), Yousof et al. (2016, 2018a), and Altun et al. (2018a, b). Here, we refer to Merovci et al. (2017), Hamedani 

et al. (2017, 2018, 2019), Aryal and Yousof (2017), Nascimento et al. (2019), Alizadeh et al. (2018, 2020a,b), Merovci 

et al. (2020), Karamikabir et al. (2020), Korkmaz et al. (2018a,b, 2020), Elgohari et al. (2021), and Almazah et al. 

(2021) to find other related applications to real-life data sets. The basic PDF shape is explored using the NKDE tool 

(see Figure 3). The Q-Q plot is used to determine whether the two real data sets are "normal" (see Figure 4). The TTT 

tool is adopted to examine the basic HRFs shape (Figure 5). The "box plot" verifies the outliers (Figure 6). 

 

It can be seen from left panel of Figure 3 that the first data's NKDE is left-skewed with bimodal shape. The right panel 

of Figure 3 proves that the second data's NKDE is also left-skewed with bimodal shape. The left and right panels of 

Figures 4 show that there is a "normality" for the two data sets. The HRF of the two genuine data sets is evident in left 

and right panels of Figure 5 to be "monotonically growing." The left and right panels of Figure 6 prove that there are 

no extreme values. The fits of the QPGWL are contrasted with those of numerous popular Lomax extensions, including 

the odd log-logistic Lomax (OLLL), special generalized mixture Lomax (SGML), reduced odd log-logistic Lomax 

(ROLLL), reduced Burr-Hatke Lomax (RBHL), gamma Lomax (GL), transmuted Topp-Leone Lomax (TTLL), 

reduced transmuted Topp-Leone Lomax (RTTLL) and beta Lomax (BL). The following goodness-of-fit (GOF) 

statistics are used for comparing competitive models: 

1. The “Akaike information” (AICr). 

2. The “consistent-AIC” (CAICr). 

3. The “Bayesian-IC” (BICr). 

4. The “Hannan-Quinn-IC” (HQICr). 

 

The MLEs and corresponding standard errors (SEs) for the two data sets are provided in Tables 1 and 3, respectively. 

Results of the four GOF statistic tests for the two data sets are presented in Tables 2 and 4, respectively. For the first 

data set, Figure 7 shows the fitted CDF, fitted density, Kaplan-Meier Survival (KMS) plot, Probability- Probability 
(P-P) plot, and estimated HRF (EHRF). For the second data set, Figure 8 displays the FCDF, fitted density, P-P plot, 

KMS plot, and EHRF.  

 

Based on Tables 2 and 4, it is noted that the QPGWL model gives the lowest values for all GOF statistic tests with 

AICr=263.303, CAICr = 263.603, BICr = 270.5954 and HQICr = 266.2345 for the first data, and AICr = 204.501, 

CAICr = 204.908, BICr = 210.931 and HQICr = 207.030 for the second data among all fitted competitive models. So, 

it could be selected as the best extension under these four GOF criteria. 
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1st data 2nd data 

Figure 3: NKDE plots. 

 

 

1st data 2nd data 

Figure 4: Q-Q plots. 
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1st data 2nd data 

Figure 5: TTT plots 

 

 

1st data 2nd data 

Figure 6: Box plots  

 

Table 1: MLEs and corresponding SEs for 1st data. 

         Model Estimates 

QPGWL(𝑎, 𝑏, 𝜋) 0.28667  8.86699 0.4202    

 (0.0278)  (0.0028) (0.003)  

KL(𝑎, 𝑏,𝛼, 𝜋) 2.6150 100.276 5.27710 78.6774 

 (0.3822) (120.49) (9.8116) (186.01) 

TTLL(𝑎, 𝑏,𝛼, 𝜋) -0.8075 2.47663 (15608) (38628) 

 (0.1396) (0.5418) (1602.4) (123.94) 

 BL(𝑎, 𝑏,𝛼, 𝜋) 3.60360 33.6387 4.83070 118.837 

 (0.6187) (63.715) (9.2382) (428.93) 

PRHRL(𝑎, 𝑏, 𝜋) 3.73×10⁶ 4.71×10⁻¹ 4.5×10⁶  

 1.01×10⁶ (0.00001) 37.1468  

 SGML(𝑎, 𝑏, 𝜋) -1.04×10⁻¹ 9.83×10⁶ 1.18×10⁷  

   (0.1223) (4843.3) (501.04)  
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RTTLL(𝑎, 𝑏, 𝜋) -0.84732 5.52057 1.15678  

 (0.1001) (1.1848) (0.0959)  

OLLL(𝑎, 𝑏, 𝜋) 2.32636 7.17×10⁵ 2.3×10⁶  

 (2.14×10⁻¹) (1.19×10⁴) (2.6×10¹)  

exp-L(𝑎, 𝑏, 𝜋) 3.62610 20074.5 26257.7  

 (0.6236) (2041.8) (99.74)  

GL(𝑎, 𝑏, 𝜋) 3.58760 52001.4 37029.7  

 (0.5133) (7955.0) (81.16)  

ROLLL(𝑎, 𝜋) 3.89056 0.57316   

 (0.3652) (0.0195)   

RBHL(𝑎, 𝜋) 1080175 513672   

 (983309) (23231)   

L(𝑎, 𝜋) 51425.4 131790   

 (5933.5) (296.12)   

 

 

Table 2: GOF statistic tests for first data. 

Model AICr BICr CAICr HQICr 

QPGWL 263.303 270.5954 263.603 266.2345 

OLLL 274.847 282.139 275.147 277.779 

TTLL 279.140 288.863 279.646 283.049 

GL 282.808 290.136 283.105 285.756 

BL 285.435 295.206 285.935 289.365 

exp-L 288.799 296.127 289.096 291.747 

ROLLL 289.690 294.552 289.839 291.645 

SGML 292.175 299.467 292.475 295.106 
RTTLL 313.962 321.254 314.262 316.893 

PRHRL 331.754 339.046 332.054 334.686 

L 333.977 338.862 334.123 335.942 

RBHL 341.208 346.070 341.356 343.162 

 

 

 

Table 3: MLEs and corresponding SEs for second data. 

         Model Estimates 

QPGWL(𝑎, 𝑏, 𝜋) 0.1985   8.0878  0.4143   

 (0.0231)  (0.0223) (0.0113)   

BL(𝑎, 𝑏,𝛼, 𝜋) 1.9218 31.2594 4.9684 169.572  

 (0.318) (316.84) (50.528) (339.21)  

KL(𝑎, 𝑏,𝛼, 𝜋) 1.6691 60.5673 2.56490 65.0640  

 (0.257) (86.013) (4.7589) (177.59)  

TTLL(𝑎, 𝑏,𝛼, 𝜋) (-0.607) 1.78578 2123.39 4822.79  

 (0.2137) (0.4152) (163.92) (200.01)  

RTTLL(𝑎, 𝑏, 𝜋) -0.6715 2.74496 1.01238   

 (0.18746) (0.6696) (0.1141)   

PRHRL(𝑎, 𝑏, 𝜋) 1.59×10⁶ 3.93×10⁻¹ 1.30×10⁶   

 2.01×10³ 0.0004×10⁻¹ 0.95×10⁶   

SGML(𝑎, 𝑏, 𝜋) -1.04×10⁻¹ 6.45×10⁶ 6.33×10⁶   

 (4.1×10⁻¹⁰) (3.21×10⁶) (3.8573)   

GL(𝑎, 𝑏, 𝜋) 1.9073 35842.433 39197.57   

 (0.3213) (6945.074) (151.653)   

OLLL(𝑎, 𝑏, 𝜋) 1.66419 6.340×10⁵ 2.01×10⁶   

 (1.8×10⁻¹) (1.68×10⁴) 7.22×10⁶   

exp-L(𝑎, 𝑏, 𝜋) 1.9145 22971.15 32882.0   

 (0.348) (3209.53) (162.22)   
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 RBHL(𝑎, 𝜋) 14055522 53203423    

 (422.01) (28.5232)    

ROLLL(𝑎, 𝜋) 2.372333 0.691092    

 (0.2683) (0.0449)    

L(𝑎, 𝜋) 99269.79 207019.36    

 (11863.9) (301.2371)    

 

Table 4: GOF statistic tests for second data. 

Model AICr BICr CAICr HQICr 

QPGWL 204.501 210.931 204.908 207.030 

KL 209.735 218.308 210.425 213.107 

TTLL 212.900 221.472 213.589 216.271 

GL 211.666 218.096 212.073 214.195 

SGML 211.788 218.218 212.195 214.317 

BL 213.922 222.495 214.612 217.294 

exp-L 213.099 219.529 213.506 215.628 

OLLL 215.808 222.238 216.215 218.337 
PRHRL 224.597 231.027 225.004 227.126 

L 222.598 226.884 222.798 224.283 

ROLLL 225.457 229.744 225.657 227.143 

RTTLL 230.371 236.800 230.778 232.900 

RBHL 229.201 233.487 229.401 230.887 
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Figure 7: Fitted CDF and PDF, P-P, KMS plots and EHRF for the first data. 
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Figure 8: Fitted CDF and PDF, P-P, KMS plots and EHRF for the second data set. 
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7. Risk analysis under insurance claims data 

The temporal growth of claims through time for each appropriate exposure (or origin) period is frequently shown in 

the historical insurance actual data in the form of a triangle presentation. The year the insurance policy was purchased 

or the time period during which the loss occurred may be regarded as the exposure period. It is obvious that the origin 

period need not be annual. For instance, it may be monthly or quarterly origin periods. The development time of an 
origin period is referred to as the claim age or claim lag. Data from separate insurance is frequently combined to 

represent uniform company lines, division levels, or risks. 

 

We examine the insurance claims payment triangle from a U.K. Motor Non-Comprehensive account in this paper as 

a practical illustration. We choose to set the origin period from 2007 to 2013 because of convenience (see Charpentier 

(2014)). The insurance claims payment data frame displays the claims data in the manner in which a database would 

normally keep it. The origin year, which ranges from 2007 to 2013, the development year, and the incremental 

payments are all listed in the first column. It's important to note that this data on insurance claims was initially 

examined using a probability-based distribution. 

 

Again, but for the claim’s insurance data, we examine the statistics on insurance claims first. Real data analysis can 

be carried out visually, quantitatively, or by combining the two. The numerical method as well as several graphical 

tools, like as the skewness-kurtosis plot (or the Cullen and Frey plot), are taken into consideration when analyzing 

initial fits of theoretical distributions such the normal, uniform, exponential, logistic, beta, lognormal, and Weibull 
(see Figure 9). We have left-skewed data with a kurtosis of less than three, as shown in Figure 9. 

 

In light of this, numerous additional graphical techniques are taken into consideration, including the NKDE approach 

for investigating the initial shape of the insurance claims density (see Figure 10, the top left plot), the Q-Q plot for 

investigating the "normality" of the current data (see Figure 10, the top right plot), the TTT plot for investigating the 

initial shape of the empirical HRF (see Figure 10, the bottom left plot), and the "box plot" for identifying the extreme 

claims (see Figure 10, the bottom right plot).  

 

Figure 10 (top left plot) shows that the initial density is an asymmetric function with left tail. No extreme claims are 

spotted based on Figure 10 (bottom right plot). Further, Figure 10 (bottom left plot) indicates that the HRF for the 

models to explain the current data should be monotonically increasing. Figure 11 presents the scattergrams for the 
insurance claims data. Figure 12 (left plot) presents autocorrelation function (the ACF), and Figure 12 (right plot) 

presents the partial autocorrelation function (the partial ACF) for the insurance claims data.  We present the ACF, 

which can be used to show how the correlation between any two signal values changes as their separation changes 

ACF. The theoretical ACF does not provide any insight into the frequency content of the process; rather, it is a time 

domain measure of the stochastic process memory. It provides some information about the distribution of hills and 

valleys across the surface with Lag = 𝑘 = 1 ; see Figure 12 (the left plot). The theoretical partial ACF with Lag =
𝑘 = 1  is also given; see Figure 12 (the right plot). Figure 12 (the right plot) reveals that the first lag value is statistically 

significant, whereas the other partial autocorrelations for all other lags are not statistically significant. Based on Figure 

10 (the top left panel), the initial NKDE is an asymmetric density with left tail. On the other hand, the density of the 

novel model contains the left tail shape, this matching and this interview is important in statistical modeling. Hence, 
the QPGWL model is recommended for model the insurance claim's payments data. 

  

We present an application for risk analysis under VaR, TVaR, TV, TMV and EL measures for the insurance claims 

data. The risk analysis is done for some confidence level as follows: 

 

𝑞 = 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% and 99.9%. 
 

The five measures are estimated for the QPGWL and GWL models. The GWL model is the better model for this 

application. Table 5 reports the KRIs for the QPGWL and GWL models. The GWL distribution was chosen because 

it is the base line distribution on which the new distribution is based. For the QPGWL model, the quantity of the VaRq 

(𝑍; 𝑎, 𝑏, 𝜋) ranges from 0.06108605|𝑞 = 60% to 0.46051700|𝑞 = 99.9%, however, for the GWL model, the quantity 

VaRq (𝑍; 𝑎, 𝑏, 𝜋)  ranges from 0.03405504|𝑞 = 60% to 0.10564970|𝑞 = 99.9%. The TVaRq (𝑍; 𝑎, 𝑏, 𝜋)  ranges from 

0.1277527|𝑞 = 60%  to 0.5271837|𝑞 = 99.9%.  However, for the GWL model, the quantity TVaRq (𝑍; 𝑎, 𝑏, 𝜋)  

ranges from 0.1007217|𝑞 = 60%  to 0.1723164|𝑞 = 99.9%. The TVq (𝑍; 𝑎, 𝑏, 𝜋) for the QPGWL model= TVq 
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(𝑍; 𝑎, 𝑏, 𝜋)  for the GWL model= 0.004444444 ∀ 𝑞.  The TMVq (𝑍; 𝑎, 𝑏, 𝜋, 0.99)  for the QPGWL model ranges from 

0.1321527|𝑞 = 60%  to 0.5315837|𝑞 = 99.9%. However, for the GWL model, the quantity TMVq (𝑍; 𝑎, 𝑏, 𝜋, 0.99)  

ranges from 0.1051217|𝑞 = 60%   to 0.1767164|𝑞 = 99.9%. Further, ∀𝑞, ELq (𝑍; 𝜂, 𝜓)  is evaluated and it is seen 

that ELq(𝑍; 𝑎, 𝑏, 𝜋) for the QPGWL model = ELq(𝑍; 𝑎, 𝑏, 𝜋) for the GWL model ∀ 𝑞. In addition, we can list the 

following results: 

VaRq(𝑍; 𝑎, 𝑏, 𝜋) for QPGWL model > VaRq(𝑍; 𝑎, 𝑏, 𝜋) for GWL model ∀ 𝑞,  

 

TVaRq(𝑍; 𝑎, 𝑏, 𝜋) for QPGWL model > TVaRq(𝑍; 𝑎, 𝑏, 𝜋) for GWL model ∀ 𝑞, 

 

TVq(𝑍; 𝑎, 𝑏, 𝜋) for QPGWL model = TVq(𝑍; 𝑎, 𝑏, 𝜋) for GWL model ∀ 𝑞,  

 
TMVq(𝑍; 𝑎, 𝑏, 𝜋, 0.99) for QPGWL model > TMVq(𝑍; 𝑎, 𝑏, 𝜋, 0.99) for GWL model ∀ 𝑞, 

 

VaRq(𝑍; 𝑎, 𝑏, 𝜋) < TVaRq(𝑍; 𝑎, 𝑏, 𝜋) < TMVq(𝑍; 𝑎, 𝑏, 𝜋) ∀ 𝑞. 
 

VaRq for QPGWL |𝑞 = 60% <  VaRq for QPGWL |𝑞 = 65% <…<  VaRq for QPGWL |𝑞 = 99.9%, 

 

VaRq for GWL |𝑞 = 60% <  VaRq for GWL |𝑞 = 65% <…<  VaRq for GWL |𝑞 = 99.9%, 

 

TVaRq for QPGWL |𝑞 = 60% <  TVaRq for QPGWL |𝑞 = 65% <…<  TVaRq for QPGWL |𝑞 = 99.9%, 

 

TVaRq for GWL |𝑞 = 60% <  TVaRq for GWL |𝑞 = 65% <…<  TVaRq for GWL |𝑞 = 99.9%, 

 

TMVq for QPGWL |𝑞 = 60% <  TMVq for QPGWL |𝑞 = 65% <…<  TVaRq for QPGWL |𝑞 = 99.9%, 

 

TMVq for GWL |𝑞 = 60% <  TMVq for GWL |𝑞 = 65% <…<  TMVq for GWL |𝑞 = 99.9%, 

 
Figure 9: Cullen and Frey plot for the claims data. 
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Figure 13 gives VaRq, TVaRq, TMVq and its corresponding Q-Q plots for QPGWL and GWL models respectively.  

Figure 13 (first column) represents the VaRq, TVaRq, TMVq for the two competitive models. Figure 13 (second 

column) shows the Q-Q plots for the VaRq, TVaRq, TMVq for the QPGWL model. Figure 13 (second column) gives 

the Q-Q plots for the VaRq, TVaRq, TMVq for the GWL model. Each plot of Figure 13 (first column) provides a 

graphical comparison between QPGWL and GWL models. Based on Figure 11m, the QPGWL model has a heavier 

tail than the GWL distribution for all KRIs. 

 

 
Figure 10: NKDE, Q-Q, TTT, box plots for the claims data. 
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Figure 11: The scattergrams for the insurance claims data. 
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Figure 12: The ACF, and the partial ACF for the insurance claims data 

 

Table 5: The KRIs for the QPGWL and GWL models. 

q VaRq(𝑍; 𝑎, 𝑏, 𝜋) TVaRq(𝑍; 𝑎, 𝑏, 𝜋) TVq(𝑍; 𝑎, 𝑏, 𝜋) TMVq(𝑍; 𝑎, 𝑏, 𝜋, 0.99) ELq(𝑍; 𝑎, 𝑏, 𝜋) 

 QPGWL model 

60% 0.06108605 0.1277527 0.004444444 0.1321527 0.06666667 

65% 0.06811008 0.1347767 0.004444444 0.1391767 0.06666667 

70% 0.07807887 0.1447455 0.004444444 0.1491455 0.06666667 

75% 0.08980491 0.1564716 0.004444444 0.1608716 0.06666667 

80% 0.10729590 0.1739625 0.004444444 0.1783625 0.06666667 

85% 0.12647470 0.1931413 0.004444444 0.1975413 0.06666667 

90% 0.15350570 0.2201723 0.004444444 0.2245723 0.06666667 

95% 0.19971550 0.2663822 0.004444444 0.2707822 0.06666667 

99% 0.30701130 0.3736780 0.004444444 0.3780780 0.06666667 

99.9% 0.46051700 0.5271837 0.004444444 0.5315837 0.06666667 

 GWL model 

60% 0.03405504 0.1007217 0.004444444 0.1051217 0.06666667 

65% 0.03747459 0.1041413 0.004444444 0.1085413 0.06666667 

70% 0.04232522 0.1089919 0.004444444 0.1133919 0.06666667 

75% 0.05033484 0.1170015 0.004444444 0.1214015 0.06666667 

80% 0.05783337 0.1245000 0.004444444 0.1289000 0.06666667 

85% 0.06363413 0.1303008 0.004444444 0.1347008 0.06666667 

90% 0.06904250 0.1357092 0.004444444 0.1401092 0.06666667 

95% 0.07916290 0.1458296 0.004444444 0.1502296 0.06666667 

99% 0.08606561 0.1527323 0.004444444 0.1571323 0.06666667 

99.9% 0.10564970 0.1723164 0.004444444 0.1767164 0.06666667 
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Figure 13: VaRq, TVaRq, TMVq and its corresponding Q-Q plots  

for the QPGWL and GWL models, respectively. 

 

8. Conclusions 

The quasi-Poisson generalized Weibull Lomax distribution, a new three-parameter compound Lomax extension, is 

derived and examined in this study. Based on the generalized Weibull Lomax model and the compounding Poisson 

family, the quasi-Poisson generalized Weibull Lomax model is developed. The new density can be "monotonically 

declining," "symmetric," "bimodal-asymmetric," "asymmetric with right tail," "asymmetric with wide peak," or 

"asymmetric with left tail." The new hazard rate can take the following shapes: "J-shape," "bathtub (U-shape)," "upside 

down-increasing," "decreasing-constant," and "upside down-increasing." Relevant mathematical properties are 

determined, including mean waiting time, mean deviation, raw and incomplete moments, residual life moments, and 

moments of the reversed residual life. We used some common copulas, including the Farlie-Gumbel-Morgenstern 

copula, the Clayton copula, the modified Farlie-Gumbel-Morgenstern copula, and the Ali-Mikhail-Haq copula, to 

present some new bivariate quasi-Poisson generalized Weibull Lomax distributions for the bivariate mathematical 

modelling. Additionally, an application of the quasi-Poisson generalized Weibull Lomax distribution is reported by 

the analysis of two real data sets. Based on two real data sets, the Poisson exponentiated exponential Lomax model 
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gives the lowest statistic test with AICr=263.303, CAICr = 263.603, BICr = 270.5954 and HQICr = 266.2345 for the 

first data, and AICr = 204.501, CAICr = 204.908, BICr = 210.931 and HQICr = 207.030 for the second data among 

all fitted competitive models. So, it could be selected as the best extension under these four GOF criteria. 

To represent count real-life data, it is suggested that a novel discrete quasi-Poisson generalized Weibull Lomax model 
be presented; for more details, see Aboraya et al. (2020), Chesneau et al. (2022), Yousof et al. (2021), and Ibrahim et 

al. (2022b). Additionally, using the Bagdonaviius-Nikulin and Nikulin-Rao-Robson tests, see, for example, Ibrahim 

et al. (2019), Goual et al. (2019, 2020), Yadav et al. (2020 and 2022), Ibrahim et al. (2022a), Goual and Yousof (2020), 

Aidi et al. (2021) and Yousof et al. (2022)). Following Altun et al. (2018a,b) and Yousof et al. (2019) and under the 

quasi-Poisson generalized Weibull Lomax distribution, some new developments of certain new regression models for 

modelling censored data sets. The generalized stress-strength parameter under the quasi-Poisson generalized Weibull 

Lomax model could be inferred using Bayesian and classical methods due to Saber and Yousof (2022) as well as 

reliability estimation for the remained stress-strength model under the quasi-Poisson generalized Weibull Lomax 

distribution due to Saber et al. (2022). A single acceptance sampling strategy with its associated application in quality 

and risk decisions might be given in the manner of Ahmed and Yousof (2022) and Ahmed et al. (2022). Finally, one 

might follow Mohamed et al. (2022a,b,c) to find applications for more insurance studies under some time series 
models such as Autoregressive (AR) models, moving average (MA) models, autoregressive moving average (ARMA) 

modes and autoregressive integrated moving average (ARIMA) models. 
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